E Book

Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras



Preface -- Introduction -- Connected Reductive Groups and their Lie Algebras -- Deligne-Lusztig Induction -- Local Systems and Perverse Shaeves -- Geometrical Induction -- Deligne-Lusztig Induction and Fourier Transforms -- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits -- References -- Index.The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig’s character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.


Ketersediaan

9783540315612Koleksi E BookTersedia

Informasi Detil

Judul Seri
-
No. Panggil
-
Penerbit Springer : Berlin, Heidelberg.,
Deskripsi Fisik
XI, 165 p.online resource.
Bahasa
English
ISBN/ISSN
9783540315612
Klasifikasi
512.2
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1st ed. 2005.
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Informasi Lainnya

Anak judul
-
Judul asli
-
DOI/URL
https://doi.org/10.1007/b104209

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaDetail XMLCite this