Detail Cantuman
Pencarian SpesifikE Book
Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
Preface -- Introduction -- Connected Reductive Groups and their Lie Algebras -- Deligne-Lusztig Induction -- Local Systems and Perverse Shaeves -- Geometrical Induction -- Deligne-Lusztig Induction and Fourier Transforms -- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits -- References -- Index.The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig’s character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.
Ketersediaan
9783540315612 | Koleksi E Book | Tersedia |
Informasi Detil
Judul Seri |
-
|
---|---|
No. Panggil |
-
|
Penerbit | Springer : Berlin, Heidelberg., 2005 |
Deskripsi Fisik |
XI, 165 p.online resource.
|
Bahasa |
English
|
ISBN/ISSN |
9783540315612
|
Klasifikasi |
512.2
|
Tipe Isi |
-
|
Tipe Media |
-
|
---|---|
Tipe Pembawa |
-
|
Edisi |
1st ed. 2005.
|
Subyek | |
Info Detil Spesifik |
-
|
Pernyataan Tanggungjawab |
Emmanuel Letellier.
|
Informasi Lainnya
Anak judul |
-
|
---|---|
Judul asli |
-
|
DOI/URL |
https://doi.org/10.1007/b104209
|
Versi lain/terkait
Tidak tersedia versi lain