E Book

Macroscopic Transport Equations for Rarefied Gas Flows



Basic quantities and definitions -- The Boltzmann equation and its properties -- The Chapman-Enskog method -- Moment equations -- Grad’s moment method -- Regularization of Grad equations -- Order of magnitude approach -- Macroscopic transport equations for rarefied gas flows -- Stability and dispersion -- Shock structures -- Boundary value problems.The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.


Ketersediaan

Tidak ada salinan data


Informasi Detil

Judul Seri
-
No. Panggil
-
Penerbit Springer : Berlin, Heidelberg.,
Deskripsi Fisik
XIV, 258 p. 35 illus.online resource.
Bahasa
English
ISBN/ISSN
9783540323860
Klasifikasi
621.4021
Tipe Isi
-

Informasi Lainnya

Anak judul
Approximation Methods in Kinetic Theory
Judul asli
-
DOI/URL
https://doi.org/10.1007/3-540-32386-4

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaDetail XMLCite this