UPT Perpustakaan UNS

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

E Book

Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques

Pourghasemi, Hamid Reza. - Nama Orang; Rossi, Mauro. - Nama Orang;

Gully erosion modeling using GIS-based data mining techniques in Northern Iran; a comparison between boosted regression tree and multivariate adaptive regression spline -- Concepts for Improving Machine Learning Based Landslide Assessment -- Multi-hazard assessment modeling using multi-criteria analysis and GIS: a case study -- Assessment of the contribution of geo-environmental factors to flood inundation in a semi-arid region of SW Iran: comparison of different advanced modeling approaches -- Land Subsidence modelling using data mining techniques. The case study of Western Thessaly, Greece -- Application of fuzzy analytical network process model for analyzing the gully erosion susceptibility -- Landslide susceptibility prediction maps: from blind-testing to uncertainty of class membership: a review of past and present developments -- Earthquake events modeling using multi-criteria decision analysis in Iran -- Prediction of Rainfall as One of the Main Variables in Several Natural Disasters -- Landslide Inventory, Sampling & Effect of Sampling Strategies on Landslide Susceptibility/Hazard Modelling at a Glance -- GIS-based landslide susceptibility evaluation using certainty factor and index of entropy ensembled with alternating decision tree models -- Evaluation of Sentinel-2 MSI and Pleiades 1B imagery in forest fire susceptibility assessment in temperate regions of Central and Eastern Europe. A case study of Romania -- Monitoring and Management of Land Subsidence induced by over-exploitation of groundwater -- A VEGETATED VARIATION MODEL FOR THE FLOODPLAIN OF LOWER MEKONG DELTA DERIVED FROM MULTI-TEMPORAL ERS-2 AND SENTINEL-1 DATA.This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, earthquake, and gully erosion. Chapters were peer-reviewed by recognized scholars in the field of natural hazards research. Each chapter provides an overview on the topic, methods applied, and discusses examples used. The concepts and methods are explained at a level that allows undergraduates to understand and other readers learn through examples. This edited volume is shaped and structured to provide the reader with a comprehensive overview of all covered topics. It serves as a reference for researchers from different fields including land surveying, remote sensing, cartography, GIS, geophysics, geology, natural resources, and geography. It also serves as a guide for researchers, students, organizations, and decision makers active in land use planning and hazard management.


Ketersediaan
#
Koleksi E Book Belum memasukkan lokasi
9783319733838
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
Cham : Springer., 2019
Deskripsi Fisik
XXII, 296 p. 146 illus., 131 illus. in color.online resource.
Bahasa
English
ISBN/ISSN
9783319733838
Klasifikasi
551
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1st ed.
Subjek
Data mining.
Data Mining and Knowledge Discovery.
Natural disasters.
Natural Hazards.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Hamid Reza Pourghasemi, Mauro Rossi.
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

UPT Perpustakaan UNS
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

UNSLA (UNS Library Automation) adalah sistem manajemen perpustakaan daring yang dikembangkan untuk mendukung layanan informasi, penelusuran koleksi, dan pengelolaan sumber daya pustaka di lingkungan Universitas Sebelas Maret. Menggunakan platform Senayan Library Management System (SLiMS), aplikasi ini memberikan kemudahan bagi pemustaka dan pustakawan dalam mengakses, mengelola, dan memanfaatkan koleksi perpustakaan secara cepat, akurat, dan terintegrasi.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?