UPT Perpustakaan UNS

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

E Book

Field Arithmetic

Fried, Michael D. - Nama Orang; Jarden, Moshe. - Nama Orang;

Infinite Galois Theory and Profinite Groups -- Valuations and Linear Disjointness -- Algebraic Function Fields of One Variable -- The Riemann Hypothesis for Function Fields -- Plane Curves -- The Chebotarev Density Theorem -- Ultraproducts -- Decision Procedures -- Algebraically Closed Fields -- Elements of Algebraic Geometry -- Pseudo Algebraically Closed Fields -- Hilbertian Fields -- The Classical Hilbertian Fields -- Nonstandard Structures -- Nonstandard Approach to Hilbert’s Irreducibility Theorem -- Galois Groups over Hilbertian Fields -- Free Profinite Groups -- The Haar Measure -- Effective Field Theory and Algebraic Geometry -- The Elementary Theory of e-Free PAC Fields -- Problems of Arithmetical Geometry -- Projective Groups and Frattini Covers -- PAC Fields and Projective Absolute Galois Groups -- Frobenius Fields -- Free Profinite Groups of Infinite Rank -- Random Elements in Profinite Groups -- Omega-free PAC Fields -- Undecidability -- Algebraically Closed Fields with Distinguished Automorphisms -- Galois Stratification -- Galois Stratification over Finite Fields -- Problems of Field Arithmetic.Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?


Ketersediaan
#
Koleksi E Book Belum memasukkan lokasi
9783540269496
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
Berlin, Heidelberg : Springer., 2005
Deskripsi Fisik
XXIII, 780 p.online resource.
Bahasa
English
ISBN/ISSN
9783540269496
Klasifikasi
512
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
2nd ed. 2005.
Subjek
Mathematical logic.
Mathematical Logic and Foundations.
Number theory.
Algebra.
Algebraic geometry.
Geometry.
Field theory (Physics).
Field Theory and Polynomials.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Michael D. Fried, Moshe Jarden.
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

UPT Perpustakaan UNS
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

UNSLA (UNS Library Automation) adalah sistem manajemen perpustakaan daring yang dikembangkan untuk mendukung layanan informasi, penelusuran koleksi, dan pengelolaan sumber daya pustaka di lingkungan Universitas Sebelas Maret. Menggunakan platform Senayan Library Management System (SLiMS), aplikasi ini memberikan kemudahan bagi pemustaka dan pustakawan dalam mengakses, mengelola, dan memanfaatkan koleksi perpustakaan secara cepat, akurat, dan terintegrasi.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?