UPT Perpustakaan UNS

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

E Book

Local Pattern Detection

Siebes, Arno. - Nama Orang; Morik, Katharina. - Nama Orang; Boulicaut, Jean-Francois. - Nama Orang;

Pushing Constraints to Detect Local Patterns -- From Local to Global Patterns: Evaluation Issues in Rule Learning Algorithms -- Pattern Discovery Tools for Detecting Cheating in Student Coursework -- Local Pattern Detection and Clustering -- Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery -- Visualizing Very Large Graphs Using Clustering Neighborhoods -- Features for Learning Local Patterns in Time-Stamped Data -- Boolean Property Encoding for Local Set Pattern Discovery: An Application to Gene Expression Data Analysis -- Local Pattern Discovery in Array-CGH Data -- Learning with Local Models -- Knowledge-Based Sampling for Subgroup Discovery -- Temporal Evolution and Local Patterns -- Undirected Exception Rule Discovery as Local Pattern Detection -- From Local to Global Analysis of Music Time Series.Introduction The dramatic increase in available computer storage capacity over the last 10 years has led to the creation of very large databases of scienti?c and commercial information. The need to analyze these masses of data has led to the evolution of the new ?eld knowledge discovery in databases (KDD) at the intersection of machine learning, statistics and database technology. Being interdisciplinary by nature, the ?eld o?ers the opportunity to combine the expertise of di?erent ?elds intoacommonobjective.Moreover,withineach?elddiversemethodshave been developed and justi?ed with respect to di?erent quality criteria. We have toinvestigatehowthesemethods cancontributeto solvingthe problemofKDD. Traditionally, KDD was seeking to ?nd global models for the data that - plain most of the instances of the database and describe the general structure of the data. Examples are statistical time series models, cluster models, logic programs with high coverageor classi?cation models like decision trees or linear decision functions. In practice, though, the use of these models often is very l- ited, because global models tend to ?nd only the obvious patterns in the data, 1 which domain experts already are aware of . What is really of interest to the users are the local patterns that deviate from the already-known background knowledge. David Hand, who organized a workshop in 2002, proposed the new ?eld of local patterns.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
Berlin : Springer., 2005
Deskripsi Fisik
XI, 233 p.online resource.
Bahasa
English
ISBN/ISSN
9783540318941
Klasifikasi
006.3
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1st ed.
Subjek
Artificial intelligence.
Algorithms.
Algorithm Analysis and Problem Complexity.
Information storage and retrieval.
Data structures (Computer science).
Data Structures and Information Theory.
Database management.
Mathematical statistics.
Probability and Statistics in Computer Science.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Katharina Morik, Jean-Francois Boulicaut, Arno Siebes.
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

UPT Perpustakaan UNS
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

UNSLA (UNS Library Automation) adalah sistem manajemen perpustakaan daring yang dikembangkan untuk mendukung layanan informasi, penelusuran koleksi, dan pengelolaan sumber daya pustaka di lingkungan Universitas Sebelas Maret. Menggunakan platform Senayan Library Management System (SLiMS), aplikasi ini memberikan kemudahan bagi pemustaka dan pustakawan dalam mengakses, mengelola, dan memanfaatkan koleksi perpustakaan secara cepat, akurat, dan terintegrasi.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?