UPT Perpustakaan UNS

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

E Book

Models for Discrete Longitudinal Data

Molenberghs, Geert. - Nama Orang; Verbeke, Geert. - Nama Orang;

Motivating Studies -- Generalized Linear Models -- Linear Mixed Models for Gaussian Longitudinal Data -- Model Families -- The Strength of Marginal Models -- Likelihood-based Marginal Models -- Generalized Estimating Equations -- Pseudo-Likelihood -- Fitting Marginal Models with SAS -- Conditional Models -- Pseudo-Likehood -- From Subject-specific to Random-effects Models -- The Generalized Linear Mixed Model (GLMM) -- Fitting Generalized Linear Mixed Models with SAS -- Marginal versus Random-effects Models -- The Analgesic Trial -- Ordinal Data -- The Epilepsy Data -- Non-linear Models -- Pseudo-Likelihood for a Hierarchical Model -- Random-effects Models with Serial Correlation -- Non-Gaussian Random Effects -- Joint Continuous and Discrete Responses -- High-dimensional Joint Models -- Missing Data Concepts -- Simple Methods, Direct Likelihood, and Weighted Generalized Estimating Equations -- Multiple Imputation and the Expectation-Maximization Algorithm -- Selection Models -- Pattern-mixture Models -- Sensitivity Analysis -- Incomplete Data and SAS.This book provides a comprehensive treatment on modeling approaches for non-Gaussian repeated measures, possibly subject to incompleteness. The authors begin with models for the full marginal distribution of the outcome vector. This allows model fitting to be based on maximum likelihood principles, immediately implying inferential tools for all parameters in the models. At the same time, they formulate computationally less complex alternatives, including generalized estimating equations and pseudo-likelihood methods. They then briefly introduce conditional models and move on to the random-effects family, encompassing the beta-binomial model, the probit model and, in particular the generalized linear mixed model. Several frequently used procedures for model fitting are discussed and differences between marginal models and random-effects models are given attention The authors consider a variety of extensions, such as models for multivariate longitudinal measurements, random-effects models with serial correlation, and mixed models with non-Gaussian random effects. They sketch the general principles for how to deal with the commonly encountered issue of incomplete longitudinal data. The authors critique frequently used methods and propose flexible and broadly valid methods instead, and conclude with key concepts of sensitivity analysis. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The text is organized so the reader can skip the software-oriented chapters and sections without breaking the logical flow. Geert Molenberghs is Professor of Biostatistics at the Universiteit Hasselt in Belgium and has published methodological work on surrogate markers in clinical trials, categorical data, longitudinal data analysis, and the analysis of non-response in clinical and epidemiological studies. He served as Joint Editor for Applied Statistics (2001–2004) and as Associate Editor for several journals, including Biometrics and Biostatistics. He was President of the International Biometric Society (2004–2005). He was elected Fellow of the American Statistical Association and received the Guy Medal in Bronze from the Royal Statistical Society. Geert Verbeke is Professor of Biostatistics at the Biostatistical Centre of the Katholieke Universiteit Leuven in Belgium. He has published a number of methodological articles on various aspects of models for longitudinal data analyses, with particular emphasis on mixed models. Geert Verbeke is Past President of the Belgian Region of the International Biometric Society, International Program Chair for the International Biometric Conference in Montreal (2006), and Joint Editor of the Journal of the Royal Statistical Society, Series A (2005–2008). He has served as Associate Editor for several journals including Biometrics and Applied Statistics. The authors also wrote a monograph on linear mixed models for longitudinal data (Springer, 2000) and received the American Statistical Association's Excellence in Continuing Education Award, based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004. .


Ketersediaan
#
Koleksi E Book Belum memasukkan lokasi
9780387289809
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
New York : Springer., 2005
Deskripsi Fisik
XXII, 687 p.online resource.
Bahasa
English
ISBN/ISSN
9780387289809
Klasifikasi
519.2
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1st ed. 2005.
Subjek
Statistics .
Probabilities.
Probability Theory and Stochastic Processes.
Statistics for Life Sciences, Medicine, Health Sciences.
Statistical Theory and Methods.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Geert Molenberghs, Geert Verbeke.
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

UPT Perpustakaan UNS
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

UNSLA (UNS Library Automation) adalah sistem manajemen perpustakaan daring yang dikembangkan untuk mendukung layanan informasi, penelusuran koleksi, dan pengelolaan sumber daya pustaka di lingkungan Universitas Sebelas Maret. Menggunakan platform Senayan Library Management System (SLiMS), aplikasi ini memberikan kemudahan bagi pemustaka dan pustakawan dalam mengakses, mengelola, dan memanfaatkan koleksi perpustakaan secara cepat, akurat, dan terintegrasi.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?