UPT Perpustakaan UNS

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

E Book

Approximation Theory

Christensen, Ole. - Nama Orang; SpringerLink (Online service) - Nama Orang; Christensen, Khadija Laghrida. - Nama Orang;

1 Approximation with Polynomials -- 1.1 Approximation of a function on an interval -- 1.2 Weierstrass’ theorem -- 1.3 Taylor’s theorem -- 1.4 Exercises -- 2 Infinite Series -- 2.1 Infinite series of numbers -- 2.2 Estimating the sum of an infinite series -- 2.3 Geometric series -- 2.4 Power series -- 2.5 General infinite sums of functions -- 2.6 Uniform convergence -- 2.7 Signal transmission -- 2.8 Exercises -- 3 Fourier Analysis -- 3.1 Fourier series -- 3.2 Fourier’s theorem and approximation -- 3.3 Fourier series and signal analysis -- 3.4 Fourier series and Hilbert spaces -- 3.5 Fourier series in complex form -- 3.6 Parseval’s theorem -- 3.7 Regularity and decay of the Fourier coefficients -- 3.8 Best N-term approximation -- 3.9 The Fourier transform -- 3.10 Exercises -- 4 Wavelets and Applications -- 4.1 About wavelet systems -- 4.2 Wavelets and signal processing -- 4.3 Wavelets and fingerprints -- 4.4 Wavelet packets -- 4.5 Alternatives to wavelets: Gabor systems -- 4.6 Exercises -- 5 Wavelets and their Mathematical Properties -- 5.1 Wavelets and L2 (?) -- 5.2 Multiresolution analysis -- 5.3 The role of the Fourier transform -- 5.4 The Haar wavelet -- 5.5 The role of compact support -- 5.6 Wavelets and singularities -- 5.7 Best N-term approximation -- 5.8 Frames -- 5.9 Gabor systems -- 5.10 Exercises -- Appendix A -- A.1 Definitions and notation -- A.2 Proof of Weierstrass’ theorem -- A.3 Proof of Taylor’s theorem -- A.4 Infinite series -- A.5 Proof of Theorem 3 7 2 -- Appendix B -- B.1 Power series -- B.2 Fourier series for 2?-periodic functions -- List of Symbols -- References.This concisely written book gives an elementary introduction to a classical area of mathematics—approximation theory—in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics and the influence of classical disciplines on many areas of modern mathematics and applications. Key features and topics: * Description of wavelets in words rather than mathematical symbols * Elementary introduction to approximation using polynomials (Weierstrass’ and Taylor’s theorems) * Introduction to infinite series, with emphasis on approximation-theoretic aspects * Introduction to Fourier analysis * Numerous classical, illustrative examples and constructions * Discussion of the role of wavelets in digital signal processing and data compression, such as the FBI’s use of wavelets to store fingerprints * Minimal prerequisites: elementary calculus * Exercises that may be used in undergraduate and graduate courses on infinite series and Fourier series Approximation Theory: From Taylor Polynomials to Wavelets will be an excellent textbook or self-study reference for students and instructors in pure and applied mathematics, mathematical physics, and engineering. Readers will find motivation and background material pointing toward advanced literature and research topics in pure and applied harmonic analysis and related areas.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: .,
Deskripsi Fisik
XI, 156 p. 5 illus.online resource.
Bahasa
English
ISBN/ISSN
9780817644482
Klasifikasi
515.2433
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1st ed. 2005.
Subjek
Applied mathematics.
Engineering mathematics.
Signal processing.
Image processing.
Speech processing systems.
Signal, Image and Speech Processing.
Applications of Mathematics.
Fourier analysis.
Harmonic analysis.
Abstract Harmonic Analysis.
Approximation theory.
Approximations and Expansions.
Functional analysis.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
by Ole Christensen, Khadija Laghrida Christensen.
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

UPT Perpustakaan UNS
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

UNSLA (UNS Library Automation) adalah sistem manajemen perpustakaan daring yang dikembangkan untuk mendukung layanan informasi, penelusuran koleksi, dan pengelolaan sumber daya pustaka di lingkungan Universitas Sebelas Maret. Menggunakan platform Senayan Library Management System (SLiMS), aplikasi ini memberikan kemudahan bagi pemustaka dan pustakawan dalam mengakses, mengelola, dan memanfaatkan koleksi perpustakaan secara cepat, akurat, dan terintegrasi.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?