UPT Perpustakaan UNS

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

E Book

Algorithmic Learning in a Random World

Vovk, Vladimir. - Nama Orang; Gammerman, Alex. - Nama Orang; Shafer, Glenn. - Nama Orang;

Conformal prediction -- Classification with conformal predictors -- Modifications of conformal predictors -- Probabilistic prediction I: impossibility results -- Probabilistic prediction II: Venn predictors -- Beyond exchangeability -- On-line compression modeling I: conformal prediction -- On-line compression modeling II: Venn prediction -- Perspectives and contrasts.Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability. This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models called repetitive structures, which originate in the algorithmic theory of randomness and statistical physics. The approach is flexible enough to incorporate most existing methods of machine learning, including newer methods such as boosting and support vector machines and older methods such as nearest neighbors and the bootstrap. Topics and Features: * Describes how conformal predictors yield accurate and reliable predictions, complemented with quantitative measures of their accuracy and reliability * Handles both classification and regression problems * Explains how to apply the new algorithms to real-world data sets * Demonstrates the infeasibility of some standard prediction tasks * Explains connections with Kolmogorov’s algorithmic randomness, recent work in machine learning, and older work in statistics * Develops new methods of probability forecasting and shows how to use them for prediction in causal networks Researchers in computer science, statistics, and artificial intelligence will find the book an authoritative and rigorous treatment of some of the most promising new developments in machine learning. Practitioners and students in all areas of research that use quantitative prediction or machine learning will learn about important new methods.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
Boston, MA : Springer., 2005
Deskripsi Fisik
XVI, 324 p. 62 illus.online resource.
Bahasa
English
ISBN/ISSN
9780387250618
Klasifikasi
006.3
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1st ed.
Subjek
Artificial intelligence.
Data structures (Computer science).
Data Structures and Information Theory.
Statistics .
Statistics and Computing/Statistics Programs.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Vladimir Vovk, Alex Gammerman, Glenn Shafer.
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

UPT Perpustakaan UNS
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

UNSLA (UNS Library Automation) adalah sistem manajemen perpustakaan daring yang dikembangkan untuk mendukung layanan informasi, penelusuran koleksi, dan pengelolaan sumber daya pustaka di lingkungan Universitas Sebelas Maret. Menggunakan platform Senayan Library Management System (SLiMS), aplikasi ini memberikan kemudahan bagi pemustaka dan pustakawan dalam mengakses, mengelola, dan memanfaatkan koleksi perpustakaan secara cepat, akurat, dan terintegrasi.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?